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Abstract

In this paper, the dynamic analysis of 3-D composite beam elements restrained at their edges by the most general

boundary conditions and subjected in arbitrarily distributed dynamic loading is presented. For the solution of the problem

at hand, a boundary element method is developed for the construction of the 14� 14 stiffness matrix and the nodal load

vector of a member of an arbitrarily shaped composite cross section, taking into account both torsional warping and shear

deformation effects, which together with the corresponding mass and damping matrices lead to the formulation of the

equation of motion. To account for shear deformations, the concept of shear deformation coefficients is used, defining

these factors using a strain energy approach. Eight boundary value problems with respect to the variable along the bar

angle of twist, to the primary warping function, to a fictitious function, to the beam transverse and longitudinal

displacements and to two stress functions are formulated and solved employing a pure BEM approach. Both free and

forced vibrations are considered, taking also into account effects of transverse, longitudinal, rotatory, torsional and

warping inertia and damping resistance. Numerical examples are presented to illustrate the method and demonstrate its

efficiency and accuracy.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

One of the problems often encountered in engineering practice is the dynamic analysis of rectilinear or
curved composite members of structures, subjected to vibratory transverse, longitudinal or twisting loading.
The dynamic forces acting on a structure may result from one or more of different causes, such as rotating
machinery, wind, symmetric and asymmetric traffic loading, blast loads or earthquake forces. Composite
structural elements, consisting of a relatively weak matrix reinforced by stronger inclusions or of different
materials in contact, are of increasing technological importance in engineering. Steel beams or columns totally
encased in concrete are most common examples, while construction using steel beams as stiffeners of concrete
plates is a quick, familiar and economical method for long bridge decks or for long span slabs. The extensive
use of the aforementioned structural elements necessitates a rigorous dynamic analysis. However, accurate
dynamic analysis in engineering practice is difficult to be achieved for two reasons.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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According to the first reason, the most general commercial programs (with very few exceptions [1,2])
consider six degrees of freedom at each node of a member of a space frame, ignoring in this way the torsional
warping effects due to the corresponding restraint at the ends of the member [3]. If the aforementioned
structures are analyzed or designed for torsion, considering only the effect of Saint Venant torsion resistance,
the analysis may underestimate the torsion in the members and the design may be unconservative. Several
researchers tried to overcome this inaccuracy by developing a 14� 14 member stiffness matrix including
torsional warping degrees of freedom at the ends of a member with open thin-walled homogeneous cross
section and assuming simple [4–7] or more complicated torsional boundary conditions [8,9]. It is worth noting
here that the solutions obtained from commercial finite-element packages, which have the possibility of
considering seven degrees of freedom at each node including warping degree of freedom (dof) [1,2] are not
exact because stiffness matrices are generated with linear and quadratic shape functions.

According to the second reason, the commercial programs that take into account shear deformations ignore
the effect of Poisson’s ratio as well as the coupled boundary conditions at the interfaces between different
materials, facing the composite cross section as one consisting of internal regions of different materials.
Though these deformations are quite small in most civil engineering applications, they may be dominant in
some situations, where bending moments are small compared to shear forces acting on the member. This is
normally true in short span beams or in structural systems such as curved box girder bridges.

Moreover, in the case of composite beams of thin-walled or laminated cross sections the aforementioned
problem can also be solved using the ‘refined models’ [10–13]. However, these models do not satisfy the
continuity conditions of transverse shear stress at layer interfaces and assume that the transverse shear stress
along the thickness coordinate remains constant, leading to the fact that kinematic or static assumptions
cannot be always valid.

In this paper, the dynamic analysis of 3-D composite beam elements subjected in dynamic twisting, bending,
transverse or longitudinal arbitrary loading is presented. Their arbitrarily shaped composite cross section
consists of materials in contact each of which can surround a finite number of inclusions, while their ends are
supported by the most general linear torsional, transverse or longitudinal boundary conditions. All the cross
section materials is assumed to have the same Poisson’s ratio. The solution of the aforementioned problem is
achieved by employing the boundary element method for the construction of the 14� 14 stiffness matrix and
the nodal load vector, taking into account both torsional warping and shear deformation effects, which
together with the corresponding mass and damping matrices lead to the formulation of the equation of
motion. The construction of the aforementioned stiffness matrix and nodal load vector is achieved by solving
directly the governing differential equations using the BEM, contrary to previous formulations employing the
FEM, where the accuracy depends on the effective selection of the shape functions. To account for shear
deformations, the concept of shear deformation coefficients is used. In this investigation the definition of these
factors is accomplished using a strain energy approach [14,15], instead of Timoshenko’s [16] and Cowper’s [17]
definitions, for which several authors [18,19] have pointed out that one obtains unsatisfactory results or
definitions given by other researchers [20,21], for which these factors take negative values. Eight boundary
value problems with respect to the variable along the bar angle of twist, to the primary warping function, to a
fictitious function, to the beam transverse and longitudinal displacements and to two stress functions are
formulated and solved employing a pure BEM [22] approach, that is only boundary discretization is used. It is
worth noting here that the coupled boundary conditions at the interfaces between different materials for the
formulation of the primary warping function, the fictitious function and the two stress functions are taken into
account. Both free and forced transverse, longitudinal or torsional vibrations are considered, taking also into
account effects of transverse, longitudinal, rotatory, torsional and warping inertia and damping resistance.
The proposed method can be efficiently applied to homogeneous and composite beams of thin-walled cross
section and to laminated composite beams, without the aforementioned restrictions of the ‘refined models’.
Numerical examples are presented to illustrate the method and demonstrate its efficiency and accuracy. The
influence of the torsional warping effect especially in composite members of open form cross section is
analyzed through examples demonstrating the importance of the inclusion of the torsional warping degrees of
freedom in the dynamic analysis of a space frame. Moreover, the discrepancy in the dynamic analysis of a
member of a spatial structure arising from the ignorance of the shear deformation effect necessitates the
inclusion of this additional effect, especially in thick-walled cross section members.
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2. Statement of the problem

Consider a prismatic 3-D beam element of length l with an arbitrarily shaped composite cross section
consisting of materials in contact, each of which can surround a finite number of inclusions, with modulus of
elasticity Ej, shear modulus Gj and mass density rj, occupying the regions Oj ðj ¼ 1; 2; . . . ;KÞ of the y; z plane
(Fig. 1). The materials of these regions are assumed homogeneous, isotropic and linearly elastic. Let also the
boundaries of the nonintersecting regions Oj be denoted by Gj ðj ¼ 1; 2; . . . ;KÞ. These boundary curves are
piecewise smooth, i.e. they may have a finite number of corners. Without loss of generality, it may be assumed
that C ~y~z and Myz are the principal systems of axes through the cross section’s centroid and shear center,
respectively.

In order to include the torsional warping behavior in the study of the aforementioned element in each node
at the element ends a seventh dof is added to the well-known six dofs of the classical 3-D frame element, which
is used in the direct stiffness method. The additional dof is the first derivative of the angle of twist y0x ¼ dyx=dx

denoting the rate of change of the angle of twist yx ¼ yxðx; tÞ. Thus, the nodal displacement vector in the local
coordinate system, as shown in Fig. 1, can be written as

DT ¼ u ~xj u ~yj u~zj yxj y ~yj y~zj y0xj u ~xk u ~yk u~zk yxk y ~yk y~zk y0xk

n o
(1)

and the respective nodal load vector as

PT ¼ Nj Qyj Qzj Mxj M ~yj M ~zj Mwj Nk Qyk Qzk Mxk M ~yk M ~zk Mwk

n o
. (2)

The nodal displacement and load vectors given in Eqs. (1) and (2) are related with the 14� 14 local stiffness
matrix of the spatial beam element written as

(3)

where the ki
Tn ðn ¼ 1; 2; 3; 4; 5; 6Þ stiffness coefficients contain the torsional warping effects, while the ki

lm

stiffness coefficients ðl;m ¼ 2; 3; 5; 6; 9; 10; 12; 13Þ contain the shear deformation effects following the so-called
Timoshenko beam theory. The evaluation of the coefficients of the 14� 14 stiffness matrix of Eq. (3), of the
nodal load vector of Eq. (2) and of the mass and damping matrices presumes the solution of four initial
boundary value problems with respect to the variable along the bar angle of twist and to the beam transverse
and longitudinal displacements that are analyzed in the following.
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Fig. 1. Prismatic beam of an arbitrarily shaped composite cross section (a) and occupying the 2-D region O (b).
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2.1. Torsional vibrations of composite bars

Defining as E1CM and G2Ix the warping and torsional rigidities of the composite cross section, respectively,
where

CM ¼
XK

j¼1

Ej

E1
CMj ¼

XK

j¼1

Ej

E1

Z
Oj

ðjP
MÞ

2
j dOj, (4a)

Ix ¼
XK

j¼1

Gj

G1
Ixj ¼

XK

j¼1

Gj

G1

Z
Oj

y2 þ z2 þ y
qjP

M

qz

� �
j

� z
qjP

M

qy

� �
j

 !
dOj (4b)

are its warping and torsion constants with respect to the modulus of elasticity and to the shear modulus,
respectively, jP

Mðy; zÞ
� �

j
is the primary warping function with respect to the shear center M of the composite

cross section of the bar and ignoring the additional inertia forces caused by the eccentricity between the
centroid and center of twist, the angle of twist yx ¼ yxðx; tÞ of the bar subjected to the arbitrarily dynamic
distributed twisting moment mx ¼ mxðx; tÞ is governed by the following initial boundary value problem
[23,24]:

E1CM

q4yx

qx4
� G1Ix

q2yx

qx2
� r1 C

r
M

q2

qt2
q2yx

qx2

� �
� I

r
M

q2yx

qt2

� �
þ ct

qyx

qt
¼ mx inside the bar, (5)

cx1yx þ cx2Mx ¼ cx3, (6a)

dx1y
0
x þ dx2Mw ¼ dx3 at the bar ends x ¼ 0; l, (6b)

yxðx; 0Þ ¼ ȳxðxÞ; _yxðx; 0Þ ¼
_̄yxðxÞ, (7a,b)

where _yxðx; tÞ ¼ qyx=qt is the first derivative of the angle of twist with respect to time; ȳxðxÞ,
_̄yxðxÞ are the

initial angle of twist and the corresponding initial velocity of the points of the bar axis; ct is the torsional
damping constant per unit length; r1C

r
M and r1I

r
M is the mass moment of warping and torsional inertia,

respectively, where C
r
M is the warping constant and I

r
M is the polar moment of inertia of the composite cross

section with respect to the shear center (see Fig. 1) and to the mass density given as

C
r
M ¼

XK

j¼1

rj

r1
CMj, (8a)
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I
r
M ¼

XK

j¼1

rj

r1

Z
Oj

ðy2 þ z2ÞdOj. (8b)

Moreover, cxi, dxiði ¼ 1; 2; 3Þ are functions specified at the boundary of the bar forming the most general
linear torsional boundary conditions, including also the elastic support, while in Eqs. (6a) and (6b) Mx ¼

Mxðx; tÞ is the twisting moment and Mw ¼Mwðx; tÞ is the warping moment at the boundary of the bar [25,26].
It is worth noting here that the reduction of Eqs. (4a), (4b) and (8a), (8b) using the modulus of elasticity

E1, the shear modulus G1 and the mass density r1 of the first material could be achieved using any
other material of the composite cross section and modifying appropriately Eq. (5). Finally, the solution of the
initial boundary value problem given from Eqs. (5), (6a), (6b) and (7a,b), which represents the dynamic
nonuniform torsion problem of composite bars requires the evaluation of the warping and torsion
constants CMj and Ixj of the j materials, ðj ¼ 1; 2; . . . ;KÞ, respectively, which is presented in Sapountzakis and
Mokos [25].

2.2. Transverse vibrations of composite beams

Defining as E1I ~y, E1I ~z the flexural rigidities of the composite cross section, where

I ~y ¼
XK

j¼1

Ej

E1

Z
Oj

~z2 dOj ; I ~z ¼
XK

j¼1

Ej

E1

Z
Oj

~y2 dOj (9a,b)

are the bending moments of inertia of the composite cross section with respect to ~y, ~z axes and to the modulus
of elasticity and defining as G1A ~y and G1A~z the shear rigidities of the Timoshenko’s beam theory of the
composite cross section, where

A ~y ¼ k ~yAG ¼
1

a ~y
AG; A~z ¼ k~zAG ¼

1

a~z
AG (10a,b)

are the shear areas with respect to ~y, ~z axes of the composite cross section, respectively, k ~y, k~z are the shear
correction factors, a ~y, a~z are the shear deformation coefficients and AG is the cross section area with respect to
the shear modulus given as

AG ¼
XK

j¼1

Gj

G1

Z
Oj

dOj (11)

the transverse displacements u~z ¼ u~zð ~x; tÞ, u ~y ¼ u ~yð ~x; tÞ of the beam subjected to the arbitrarily distributed
dynamic transverse loadings p~z ¼ p~zð ~x; tÞ, p ~y ¼ p ~yð ~x; tÞ and to the arbitrarily distributed dynamic bending
moments m ~y ¼ m ~yð ~x; tÞ, m~z ¼ m~zð ~x; tÞ, respectively (see Fig. 1) are governed by the following initial boundary
value problems [27]:

(i) For u~z ¼ u~zð ~x; tÞ

E1I ~y
q4u~z
q ~x4
þ r1A

r q
2u~z

qt2

� �
� r1I

r
~y

q2

qt2
q2u~z
q ~x2

� �� �
þ

E1I ~y

G1A~z

q2

q ~x2
p~z � r1A

r q
2u~z

qt2

� �� �

�
r1I

r
~y

G1A~z

q2

qt2
p~z � r1Ar q

2u~z

qt2

� �( )
þ c~z

qu~z

qt
¼ p~z þ

qm ~y

q ~x
inside the beam, ð12Þ

c~z1u~z þ c~z2Q~z ¼ c~z3, (13a)

d ~z1y ~y þ d ~z2M ~y ¼ d ~z3 at the beam ends ~x ¼ 0; l, (13b)

u~zð ~x; 0Þ ¼ ū~zð ~xÞ; _u~zð ~x; 0Þ ¼ _̄u~zð ~xÞ. (14a,b)
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(ii) For u ~y ¼ u ~yð ~x; tÞ

E1I ~z
q4u ~y
q ~x4
þ r1Ar q

2u ~y

qt2

( )
� r1I

r
~z

q2

qt2
q2u ~y

q ~x2

 !( )
þ

E1I ~z

G1A ~y

q2

q ~x2
p ~y � r1A

r q
2u ~y

qt2

 !( )

�
r1I

r
~z

G1A ~y

q2

qt2
p ~y � r1A

r q
2u ~y

qt2

 !( )
þ c ~y

qu ~y

qt
¼ p ~y �

qm~z

q ~x
inside the beam, ð15Þ

c ~y1u ~y þ c ~y2Q ~y ¼ c ~y3, (16a)

d ~y1y~z þ d ~y2M ~z ¼ d ~y3 at the beam ends ~x ¼ 0; l, (16b)

u ~yð ~x; 0Þ ¼ ū ~yð ~xÞ; _u ~yð ~x; 0Þ ¼ _̄u ~yð ~xÞ, (17a,b)

where _u~zð ~x; tÞ ¼ qu~z=qt, _u ~yð ~x; tÞ ¼ qu ~y=qt are the first derivatives of the transverse displacements u~z, u ~y,
respectively, with respect to time; ū~zð ~xÞ, _̄u~zð ~xÞ and ū ~yð ~xÞ, _̄u ~yð ~xÞ are the initial transverse displacements u~z, u ~y and
the corresponding initial velocities of the points of the beam axis; c~z, c ~y are the flexural damping constants per
unit length with respect to ~z, ~y axes, respectively; r1Ar is the mass per unit length and r1I

r
~y , r1I

r
~z are the mass

moments of rotatory inertia about the ~y, ~z axes, respectively, where Ar is the cross section area and I
r
~y , I

r
~z are

bending moments of inertia of the composite cross section with respect to ~y, ~z axes, respectively and to the
mass density given as

Ar ¼
XK

j¼1

rj

r1

Z
Oj

dOj, (18)

I
r
~y ¼

XK

j¼1

rj

r1

Z
Oj

~z2 dOj, (19a)

I
r
~z ¼

XK

j¼1

rj

r1

Z
Oj

~y2 dOj. (19b)

Moreover, c~zi, d ~zi and c ~yi, d ~yiði ¼ 1; 2; 3Þ are functions specified at the boundary of the beam. The boundary
conditions (13a), (13b) and (16a), (16b) are the most general linear flexural boundary conditions, including
also the elastic support. In Eqs. (13a), (13b) and (16a), (16b) Q ~z ¼ Q~zð ~x; tÞ, Q ~y ¼ Q ~yð ~x; tÞ are the shear forces
and M ~y ¼M ~yð ~x; tÞ, M ~z ¼M ~zð ~x; tÞ are the bending moments at the boundary of the beam with respect to ~z, ~y
axes, respectively given as

Q ~z ¼ G1A~z
qu~z

q ~x
þ y ~y

� �
; Q ~y ¼ G1A ~y

qu ~y

q ~x
� y~z

� �
, (20a,b)

M ~y ¼ E1I ~y
qy ~y
q ~x

; M ~z ¼ E1I ~z
qy~z
q ~x

. (21a,b)

It is worth here noting that the reduction of Eqs. (9), (11), (18) and (19) using the modulus of elasticity E1,
the shear modulus G1 and the mass density r1 of first material could be achieved using any other material of
the composite cross section and modifying appropriately Eqs. (12), (15), (20) and (21).

The solution of the initial boundary value problems given from Eqs. (12), (13a), (13b), (14a,b) and (15),
(16a), (16b), (17a,b), which represent the transverse vibrations of composite beams, presumes the evaluation of
the shear deformation coefficients a ~y, a~z, respectively, corresponding to the principal centroidal system of axes
C ~y~z. These coefficients are established equating the approximate formula of the shear strain energy per unit
length [19] with the exact one given and are obtained as [27]

a ~y ¼
1

k ~y
¼

AG

E1D2

XK

j¼1

Z
Oj

Ej ðrYÞj � e
� 	

� ðrYÞj � e
� 	

dOj, (22a)
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a~z ¼
1

k~z
¼

AG

E1D2

XK

j¼1

Z
Oj

Ej ðrFÞj � d
� 	

� ðrFÞj � d
� 	

dOj , (22b)

where ðt ~x~zÞj ; ðt ~x ~yÞj are the transverse (direct) shear stress components, ðrÞj � iyðq=qyÞj þ izðq=qzÞj is a symbolic
vector with i ~y; i ~z the unit vectors along ~y and ~z axes, respectively, D is given from

D ¼ 2ð1þ nÞI ~yI ~z, (23)

where n is the Poisson’s ratio of the cross section materials, which for the torsionless bending problem is
assumed to be common, e and d are vectors defined as

e ¼ nI ~y
~y2 � ~z2

2

� �
i ~y þ nI ~y ~y~z

� �
i~z, (24a)

d ¼ nI ~z ~y~zð Þi ~y þ nI ~z
~z2 � ~y2

2

� �
i~z (24b)

and Y ~y; ~zð Þð Þj, F ~y; ~zð Þð Þj are stress functions, which are evaluated from the solution of the following Neumann-
type boundary value problems [28]

ðr2YÞj ¼ �2I ~y ~y in Ojðj ¼ 1; 2; . . . ;KÞ; , (25a)

Ej

qY
qn

� �
j

� Ei

qY
qn

� �
i

¼ ðEj � EiÞn � e on Gjðj ¼ 1; 2; . . . ;KÞ, (25b)

ðr2FÞj ¼ �2I ~z ~z in Ojðj ¼ 1; 2; . . . ;KÞ, (26a)

Ej

qF
qn

� �
j

� Ei

qF
qn

� �
i

¼ ðEj � EiÞn � d on Gjðj ¼ 1; 2; . . . ;KÞ, (26b)

where n is the outward normal vector to the boundary Gj (Ei ¼ 0 at a free boundary). In the case of negligible
shear deformations a~z ¼ a ~y ¼ 0. It is worth here noting that in the most general case of a composite cross
section with materials of different Poisson’s ratios, the problem of torsionless bending becomes considerably
more complicated, due to the fact that in this case the assumption of negligibly small stress components ðsyyÞj,
ðszzÞj and ðtyzÞj is not correct [19]. However, having in mind that the values of the Poisson’s ratios even for
materials with significantly different elastic moduli are almost the same, it follows that the aforementioned
assumption is realistic. Finally, the initial boundary value problem for the axial vibration of bars is presented
in Humar [27].
3. Integral representations—numerical solution

3.1. For the angle of twist yx and the deflections u~z, u ~y and u ~x

The numerical solution of the initial boundary value problems described by Eqs. (5), (6a), (6b), (7a,b), (12),
(13a) (13b), (14a,b) (15), (16a), (16b), and (17a,b) is similar. Their solution is accomplished using BEM [22], as
this is presented in Sapountzakis [29].
3.2. For the primary warping function ðjP
MÞj

The evaluation of the primary warping function ðjP
M Þj is accomplished using BEM [22] as this is presented in

in Sapountzakis and Mokos [25].
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3.3. For the stress functions Yðy; zÞð Þj and Fðy; zÞð Þj

The evaluation of the stress functions Yðy; zÞð Þj and Fðy; zÞð Þj is accomplished using BEM [22] as this is
presented in Mokos and Sapountzakis [28].

4. Numerical examples

On the basis of the analytical and numerical procedures presented in the previous sections, a FORTRAN
program has been written and representative examples have been studied to demonstrate the efficiency, wherever
possible the accuracy and the range of applications of the developed method. In all the examples treated each cross
section has been analyzed employing NCS ¼ 300 constant boundary elements and NBeam ¼ 29 constant elements
along the axis of each beam, which are enough to ensure the convergence ð�p10�3Þ of the solution procedure.

Example 1. A cantilever slab and beam structure of composite cross section (Fig. 2a), of length l ¼ 5.00m,
loaded at its free end by an eccentric concentrated load P~zð ~x; tÞ ¼ PðtÞdð ~x� lÞ (Fig. 2b), where dð ~x� lÞ is the
Dirac function, Po ¼ 10 kN, t1 ¼ 0:02 s, with material properties EC35 ¼ 3:35� 107 kPa (reference material),
EC20 ¼ 2:90� 107 kPa, v ¼ 0:16, rC35 ¼ rC20 ¼ 2500 kg=m3, damping ratio x ¼ 0, and cross section properties
AG ¼ AE ¼ 0.76628m2, Ar

¼ 0.82m2, k~z ¼ 3:04033E� 01, I ~y ¼¼ 9:83021E� 02m4, I
r
~y ¼ 10:2324E� 02m4,

I
r
M ¼ 2:68615E� 01m4, Ix ¼ 2.22768E�02m4, CM ¼ 2.22217E�03m6, C

r
M ¼ 2:32248E� 03m6, eM ¼

1.29767E�01m (between the centroid C with respect to mass density and the center of twist M with respect
to modulus of elasticity of the composite cross section) has been studied. In Fig. 3 the boundary distribution of
the primary warping function jP

M of the composite cross section of the slab and beam structure is presented.
From this figure it follows that torsional warping is not constant along the thickness of the cross section walls
as it is assumed in Thin Tube Theory for thin-walled beams. In Table 1 the first five eigenfrequencies of the
axially free vibrating structure are presented as compared wherever possible with those obtained from an
analytic solution employing a continuous system [27] and from a 3-D finite-element solution [30] using 600 and
4000 eight-noded hexahedral solid elements, respectively. From this table the accuracy of the results of the
proposed method is remarkable. Moreover, in Fig. 4 the first five modeshapes obtained from the proposed
solution of the axially free vibrating beam are presented. In Table 2 the first five eigenfrequencies of the
torsionally free vibrating beam are presented as compared with those obtained ignoring torsional warping
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Fig. 2. Cantilever slab and beam structure of Example 1 of composite cross section (a), loaded at its free end by an eccentric concentrated

dynamic load P~z tð Þ (b).
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max ϕM = 0.2235m2P

Fig. 3. Distribution of the primary warping function jP
M of the composite cross section of the cantilever slab and beam structure of

Example 1.

Table 1

Eigenfrequencies oi ðrad=sÞ for the axial free vibration of the cantilever slab and beam composite structure of Example 1

oi BEM (CPU: 2 s) Continuous systems [27] 3-D FEM [30] (600 Solid

FE) (CPU: 24 s)

3-D FEM [30] (4000 Solid

FE) (CPU: 35 s)

1 1111.659 1111.141 1116.189 1111.927

2 3333.878 3333.422 3419.023 3413.038

3 5552.808 5555.703 5773.001 5703.005

4 7766.258 7777.985 7994.1113 7914.1331

5 9972.044 10000.266 10079.234 10018.119
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(0.442)

Fig. 4. First five modeshapes of the axially free vibrating cantilever slab and beam composite structure of Example 1.
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behavior (12 dof of the classical 3-D frame element), with those obtained taking into account or ignoring
warping inertia (with 14 dof) and wherever possible with those obtained from a 3-D finite-element solution
[30] using 600 and 4000 eight-noded hexahedral solid elements, respectively. From this table, the accuracy of
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Table 2

Eigenfrequencies oi ðrad=sÞ of the torsionally free vibrating cantilever slab and beam composite structure of Example 1

oi BEM (CPU: 16 s) 3-D FEM [30] (600

Solid FE) (CPU: 29 s)

3-D FEM [30] (4000

Solid FE) (CPU: 38 s)
12� 12 member

stiffness matrix

14� 14 member stiffness matrix

With torsional

inertia

With torsional

inertia

With torsional and

warping inertia

1 217.426 242.6208 242.5074 244.124 242.623

2 652.124 775.3973 772.1076 770.234 760.101

3 1086.361 1439.223 1422.253 1335.254 1385.232

4 1519.827 2293.520 2241.344 2245.157 2237.593

5 1952.216 3374.459 3251.226 3315.172 3305.263
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Fig. 5. First three modeshapes of the torsionally free vibrating cantilever slab and beam composite structure of Example 1.

E.J. Sapountzakis, V.G. Mokos / Journal of Sound and Vibration 306 (2007) 818–834 827
the results of the proposed method is once more verified, the ignorance of the torsional warping behavior
proves to be prohibitive, while the discrepancy of the results arising from the ignorance of the warping inertia
especially in higher eigenfrequencies is noteworthy. Moreover, in Fig. 5 the first three modeshapes obtained
from the proposed solution employing either the 12 dof classical 3-D frame element or the 14 dof one taking
into account the warping inertia are presented. With regard to the computed mode shapes, though the nodal
patterns of corresponding modeshapes remain the same, the normalized modal angles of twist are significantly
different. In Table 3 the first five eigenfrequencies of the transversely free vibrating beam are presented as
compared with those obtained taking into account or ignoring shear deformation, with those obtained taking
into account or ignoring rotary inertia and wherever possible with those obtained from a 3-D finite-element
solution [30] using 600 and 4000 eight-noded hexahedral solid elements, respectively. From this table, the
accuracy of the results of the proposed method (comparison between the results of the 3-D FEM solution and
those obtained taking into account both shear deformation and rotary inertia) is once more verified, the
ignorance of the shear deformation proves to be prohibitive, while the discrepancy of the results arising from
the ignorance of the rotary inertia especially in higher eigenfrequencies is remarkable. Moreover, in Fig. 6 the
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Table 3

Eigenfrequencies oi ðrad=sÞ of the transversely free vibrating in z direction cantilever slab and beam composite structure of Example 1

oi BEM (CPU: 14 s) 3-D FEM [30] (600

Solid FE) (CPU:

26 s)

3-D FEM [30]

(4000 Solid FE)

(CPU: 37 s)Without shear deformation With shear deformation

With transverse

inertia

With transverse

and rotary

inertia

With transverse

inertia

With transverse

and rotary

inertia

1 178.229 176.195 163.798 162.961 165.746 163.147

2 1116.583 1035.722 742.984 739.072 747.594 745.631

3 3125.550 2657.422 1601.622 1591.092 1599.841 1597.968

4 6122.996 4690.369 2465.149 2456.699 2877.128 2459.699

5 10118.64 6956.457 3326.177 3300.071 3515.869 3308.085
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Fig. 6. First four modeshapes of the transversely free vibrating in z direction cantilever slab and beam composite structure of Example 1.
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first four modeshapes obtained from the proposed solution taking into account or ignoring shear deformation
and including rotary inertia are presented. With regard to the computed mode shapes, though the nodal patterns
of corresponding modeshapes remain the same, the normalized modal deflections are significantly different.

It is worth here noting the major merit of the aforementioned accuracy of the proposed method compared
with the 3-D FEM solution using solid elements, arising from the disadvantages of the latter due to the
difficulties of
�
 support modelling;

�
 discretizing a complex structure despite the existing element generators;

�
 discretizing a structure including thin-walled members (shear-locking, membrane-locking [31]);

�
 increased number of dof leading to severe or unrealistic computational time especially for structures

consisting of many elements;

�
 reduced oversight of the 3-D FEM solution compared with that of the beam-like structures employing

stress resultants.
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Table 4

Angle of twist max ydynx (rad) and dynamic magnification factor at the fifths of the beam length l(m), of the cantilever slab and beam

composite structure of Example 1

l With torsional inertia With torsional and warping inertia

max ydynx � 105 ystaticx � 105 Dy max ydynx � 105 ystaticx � 105 Dy

12� 12 member stiffness matrix

1 1.154778 0.790349 1.461098 – – –

2 2.300025 1.580699 1.455068 – – –

3 3.374221 2.371049 1.423092 – – –

4 4.329542 3.161398 1.369503 – – –

5 5.103968 3.885885 1.313464 – – –

14� 14 member stiffness matrix

1 0.653125 0.461627 1.414832 0.650943 0.461627 1.410105

2 1.660572 1.212281 1.369791 1.658610 1.212281 1.368173

3 2.632601 1.997837 1.317725 2.632743 1.997837 1.317797

4 3.556093 2.787605 1.275681 3.558246 2.787605 1.276453

5 4.372269 3.512015 1.244946 4.371209 3.512015 1.244644
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While the use of shell elements cannot give accurate results since the warping of the walls of a cross section
cannot be taken into account (midline model).

Moreover, noting Tables 1–3 it follows that for the analysis of this example with the presented numerical
procedures the maximum CPU time needed at a Personal Computer Intel(R) 2.00GHz is less than 16 s, while the
corresponding one using 600 and 4000 eight-noded hexahedral solid elements is less than 29 and 38 s,
respectively. This remark demonstrates the convergence and stability of the proposed method and that the CPU
times of the presented numerical procedures are competitive with those of a standard 3-D FEM approach.

According to the forced vibrations case, in Tables 4 and 5 the maximum values of the angle of twist max ydynx and
the deflection in z direction max u

dyn
~z are shown together with the corresponding static ones ystaticx , ustatic

~z for the
calculation of the dynamic magnification factor D ¼ max jRðtÞj, RyðtÞ ¼ ydynx =ystaticx , RuðtÞ ¼ u

dyn
~z =ustatic

~z taking into
account or ignoring torsional warping behavior, warping inertia and shear deformation, rotary inertia, respectively.
Moreover, in Fig. 7 the time history of the angle of twist yx at the free end of the cantilever beam is presented as
compared with this obtained ignoring torsional warping behavior, while in Fig. 8 the time history of the deflection in
z direction u~z at the same point is presented as compared with this obtained ignoring shear deformation effect. The
conclusions drawn for the free vibrations case are also verified for the forced vibrations one.

Example 2. A curved clamped beam of length l ¼ 80.00m, of composite cross section consisting of a concrete
C30/37 (EC ¼ 3:2� 107 kPa, rC ¼ 2500 kg=m3) part (reference material) stiffened by a steel Fe510
(ES ¼ 2:1� 108 kPa, rS ¼ 7850 kg=m3) one, forming a box shaped closed cross section, with uniform
Poisson’s n ¼ 0.20 and damping x ¼ 0.04 ratios and cross section properties AG ¼ AE ¼ 6.01600m2,
Ar
¼ 4.25273m2, k~z ¼ 0:20945, I ~y ¼ 3:73790m4, I

r
~y ¼ 2:35666m4, I

r
M ¼ 20:02965m4, Ix ¼ 6.07669m4,

CM ¼ 1.50533m6, C
r
M ¼ 0:53237m6, eM ¼ 0.47226m (between the centroid C with respect to mass density

and the center of twist M with respect to modulus of elasticity of the composite cross section) has been studied
(Fig. 9). In Table 6 the first five eigenperiods of the free vibrating discretized structural model (Fig. 10) of the
curved beam are presented as compared with those obtained taking into account or ignoring torsional warping
behavior (14 instead of 12 dof), shear deformation and rotary, torsional and warping inertia. As it is easily
verified from this table due to the closed form of the beam cross section torsional warping behavior can be
neglected. Finally, the presented curved beam has been examined in forced vibrations induced by a centrally
applied (point C) concentrated dynamic load P~zð ~x; tÞ ¼ PoHðtÞdðx̄� l=2; ȳ� hÞ (Fig. 9a and b), where
dðx̄� l=2; ȳ� hÞ is the Dirac function in two dimensions, HðtÞ is the Heaviside function, Po ¼ 100 kN,
t1 ¼ 0:5 s. In Fig. 11 the time history of the deflection in z direction u~z at section C (Fig. 9) is presented as
compared with this obtained ignoring shear deformation effect.
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Table 5

Deflection max u
dyn
~z (m) in z direction and dynamic magnification factor at the fifths of the beam length l(m), of the cantilever composite

structure of Example 1

l With transverse inertia With transverse and rotary inertia

max u
dyn
~z � 105 ustatic~z � 105 Du max u

dyn
~z � 105 ustatic~z � 105 Du

Without shear deformation

1 1.184323 0.731883 1.618186 1.188926 0.731883 1.624477

2 4.328752 2.714620 1.594607 4.348420 2.714620 1.601852

3 8.837667 5.628844 1.570068 8.886009 5.628844 1.578656

4 14.17125 9.155189 1.547893 14.25474 9.155189 1.557012

5 19.41739 12.65264 1.534651 19.53355 12.65264 1.543832

With shear deformation

1 1.826575 1.034173 1.766218 1.824482 1.034173 1.764194

2 5.628834 3.319200 1.695841 5.634514 3.319200 1.697552

3 10.75720 6.535714 1.645911 10.79082 6.535714 1.651054

4 16.65847 10.36435 1.607285 16.72168 10.36435 1.613385

5 22.36327 14.13890 1.581684 22.45749 14.13890 1.588348
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Fig. 7. Time history of the angle of twist yx at the free end of the cantilever slab and beam composite structure of Example 1.
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5. Concluding remarks

In this paper, the dynamic analysis of 3-D composite beam elements restrained at their edges by the most
general linear torsional, transverse or longitudinal boundary conditions and subjected in arbitrarily
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Fig. 9. Plan view (a) and composite cross section and (b) of the curved clamped beam of Example 2.
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distributed dynamic twisting, bending, transverse or longitudinal loading is presented. For the solution of the
problem at hand, a boundary element method is developed for the construction of the 14� 14 stiffness matrix
and the nodal load vector, of a member of an arbitrarily shaped composite cross section, taking into account
both torsional warping and shear deformation effects, which together with the corresponding mass and
damping matrices lead to the formulation of the equation of motion. The composite member consists of
materials in contact each of which can surround a finite number of inclusions. All the cross section materials is
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Table 6

Eigenperiods Ti of the curved clamped composite beam of Example 2

Eigenperiods Ti(s) 14� 14 member stiffness matrix 12� 12 member stiffness matrix

Including shear deformation Ignoring shear deformation Including shear deformation Ignoring shear deformation

Including transverse, rotary, torsional and warping inertia Including transverse, rotary, torsional inertia and ignoring

warping inertia

1 8.590900E�01 8.455086E�01 8.592216E�01 8.456429E�01

2 2.917596E�01 2.805310E�01 2.918888E�01 2.806597E�01

3 1.502124E�01 1.406928E�01 1.502664E�01 1.407642E�01

4 1.127833E�01 1.117127E�01 1.139600E�01 1.128813E�01

5 9.201591E�02 8.344578E�02 9.204184E�02 8.347931E�02

Including transverse inertia and ignoring rotary, torsional and warping inertia

1 8.550508E�01 8.412664E�01 8.551674E�01 8.413849E�01

2 2.897008E�01 2.782027E�01 2.897982E�01 2.782970E�01

3 1.469535E�01 1.368381E�01 1.469760E�01 1.368620E�01

4 9.028992E�02 8.115724E�02 9.030397E�02 8.117244E�02

5 6.228844E�02 5.380419E�02 6.229755E�02 5.381445E�02
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Fig. 10. Discretized structural model of the curved clamped beam of Example 2.
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assumed to have the same Poisson’s ratio. To account for shear deformations, the concept of shear
deformation coefficients is used, defining these factors using a strain energy approach. Both free and forced
transverse, longitudinal or torsional vibrations are considered, taking also into account effects of transverse,
longitudinal, rotatory, torsional and warping inertia and damping resistance. The main conclusions that can
be drawn from this investigation are:
(a)
 The numerical technique presented in this investigation is well suited for computer-aided analysis.

(b)
 The accuracy of the obtained results compared with those obtained from a 3-D FEM solution is

remarkable. Having in mind both the disadvantages of the 3-D FEM solution using solid elements
(difficulties in support modelling, in discretizing a complex structure, in discretizing a structure including
thin-walled members (shear-locking, membrane-locking), in the increased number of dof leading to severe
or unrealistic computational time, in the reduced oversight of the 3-D FEM solution compared with that
of the beam-like structures employing stress resultants) and the fact that the use of shell elements cannot
give accurate results since the warping of the walls of a cross section cannot be taken into account (midline
model), the importance of the proposed method becomes more evident.
(c)
 Torsional warping is not constant along the thickness of the cross section walls as it is assumed in Thin
Tube Theory for thin-walled beams.
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Fig. 11. Deflection response at section C of the curved clamped beam of Example 2.
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(d)
 The discrepancy of the results arising from the ignorance of the torsional warping dof at the ends of a
member necessitate the utilization of the 14� 14 member stiffness matrix, especially for beams with open
form cross section.
(e)
 The considerable influence of the shear deformation effect in the deflection and the internal stress
resultants is pointed out.
(f)
 The discrepancy of the results arising from the ignorance of either the warping or the rotary inertia
especially in higher eigenfrequencies is noteworthy.
(g)
 The advantages of a box shaped closed cross section beam subjected in torsional loading compared with
that of an open one are easily verified.
(h)
 The developed procedure retains the advantages of a BEM solution over a pure domain discretization
method since it requires only boundary discretization.
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